Resource sharing

Giovanni De Micheli
Integrated Systems Laboratory

SYNTHESIS AND
OPTIMIZATION OF
DIGITAL CIRCUITS

Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli — All rights reserved

Module 1

u Objectives
s Motivation and problem formulation
s Flat and hierarchical graphs
s Functional and memory resources

s Extension to module selection

(c) Giovanni De Micheli

Allocation and binding

u Allocation:

s Number of resources available
u Binding:

s Relation between operations and resources
u Sharing:

s Many-to-one relation
u Optimum binding/sharing:

s Minimize the resource usage

(c) Giovanni De Micheli

Binding

u Limiting cases:

s Dedicated resources

t One resource per operation
t No sharing

s One multi-task resource
t+ ALU

s One resource per type

(c) Giovanni De Micheli

Optimum sharing problem

u Scheduled sequencing graphs

s Operation concurrency is well defined

u Consider operation types independently
s Problem decomposition
s Perform analysis for each resource type

(c) Giovanni De Micheli

Compatibly and conflicts

0 Operation compatibility:
0 Same type
0 Non concurrent

0 Compatibility graph:
0 Vertices: operations
0 Edges: compatibility relation

0 Conflict graph:

0 Complement of compatibility graph

(c) Giovanni De Micheli

t1

x=a+b y=c+d 1

t2

s=x+y t=x-y 3

t3

z=a+t 5

Compatibility graph

oe
\
ofRc

Conflict graph

fo

(c) Giovanni De Micheli

Example

t1 x=a+b y=c+d 1 2
t2 S=xty t=x-y 3 4
t3 z=a+t 5
Conflict Compatibility

6

fo

Coloring Partitioning

P

e

el

ALUL: 1,35
ALU2: 2,4

Compatibility and conflicts

u Compatibility graph:
s Partition the graph into a minimum number of cliques

s Find clique cover number « (G.)

u Conflict graph:

s Color the vertices by a minimum number of colors.

s Find the chromatic number x (G_)

u Intractable problems:

s Heuristic algorithms

(c) Giovanni De Micheli

Data-flow graphs
(flat sequencing graphs)
u The compatibility/conflict graphs have special properties:

s Compatibility
t Comparability graph
s Conflict

t Interval graph

u Polynomial time solutions:

s Golumbic’ s algorithm

s Left-edge algorithm

(c) Giovanni De Micheli 9

Perfect graphs

u Comparability graph:

s Graph G (V, E) has an orientation G (V, F) with the transitive
property

(v, v)eF and (v,v)eF — (v,v)eF

u Interval graph:

s Vertices correspond to intervals
s Edges correspond to interval intersection

s Subset of chordal graphs

t Every loop with more than three edges has a chord

(c) Giovanni De Micheli

10

(c) Giovanni De Micheli

TIME 1

TIME 2

TIME 3

TIME 4

5 9
=
\\ n // ///
~ -
\/'“\ -
Nop
~_7/

Example

y /2 / \\ ; 10
TIME 1 / \ 10
¥ SR
@ / \ - @ 1
OO
4 7 @
TIME 3
[ellle
5 9
TIME 4 Wi @

TIME 2

(c) Giovanni De Micheli 12

Left-edge algorithm

u Input:

s Set of intervals with left and right edge
t Start and Stop times

s A set of colors (initially one color)

u Rationale:
s Sort intervals in a list by left edge

s Assign non overlapping intervals to first color using the list

s When possible intervals are exhausted,
increase color counter and repeat

(c) Giovanni De Micheli

13

Example

8 IIIIIIIIIIIIIII R
™ To]

7 IIIIIIIIIIIII R

O—F——————- —_— R ——
ID———————- f—7——————- 1%)
] o |) — S
oo 4 2
c
SR R IR R O £

- ©

- —— - -4 @ —-——— =

Oll lllllllllllll

<

o

@©

|-

o

© <t N ks

=

c

o

O

Coloring

Colored conflict

14

graph

(c) Giovanni De Micheli

Left-edge algorithm

LEFT_EDGE(/) {
Sort elements of /in a list L in ascending order of /;

c=0;
while (some interval has not been colored) do {
S = ;
r=0;
while (exists s € L such that /; > r) do {
s = First element in the list L with [> r;
S=SU({s}
r=rs
Delete s from L;
}
c=ct1;
Label elements of S with color c;
}

(c) Giovanni De Micheli

15

Hierarchical sequencing graphs

u Hierarchical conflict/compatibility graphs:

s Easy to compute

s Prevent sharing across hierarchy

u Flatten hierarchy:
s Bigger graphs

s Destroy nice properties

(c) Giovanni De Micheli

17

Example

a
+
TIME 1 a a
: (D)—1(2)
*

TIME 2 k) ‘ .

TME3 \J /‘i ‘

TIME 4 v A:” ; a 9
N WGRY alE

TIME 6 (v) \/ v a

(@) (b) (©)

(c) Giovanni De Micheli 18

Example

|
TIME 1 @\
TIME 2 \/ 6
TIME 3 ﬂ \
TIME 4 \/

(@)

(c) Giovanni De Micheli

(b)

/
)

(©)

19

Register binding problem

u Given a schedule:

s Lifetime intervals for variables
s Lifetime overlaps

u Conflict graph (interval graph):
s Vertices < variables
s Edges < overlaps
s Interval graph

u Compatibility graph (comparability graph):

s Complement of conflict graph

(c) Giovanni De Micheli

20

Register sharing in data-flow graphs

u Given:
s Variable lifetime conflict graph

u Find:

s Minimum number of registers storing all the variables

u Key point:

s Interval graph
t Left-edge algorithm (polynomial-time complexity)

(c) Giovanni De Micheli

21

2
TIME 1
71 \ 72

3 o

TIME 2 @
z4
z3
TIME 3 !
N

TIME 4 z5 @5

(@)

(c) Giovanni De Micheli

Example

z1 z2

z3 z4

z5 z6
(b)

(©)

22

Register sharing
general case

u lterative conflicts:
s Preserve values across iterations

s Circular-arc conflict graph
t Coloring is intractable

u Hierarchical graphs:

s General conflict graphs
t Coloring is intractable

u Heuristic algorithms

(c) Giovanni De Micheli

23

Example

_ _
_ _
Lo o
o Lol
o Lo
I 1 L X < I
I I
I I
I I
_ L__ > >l __J _
_ _
_ _
L] - N o I J
~ < ©
N N N
— ™ Ts)
N N N
e B
_ e
Tt m _
Pl _ _
Pl _
| “ _ - _
[_
. X 9 = _
L] | a/> 1> !
Ly — © |
L1y |
R A _
v > |
-] _
_

Z6

z5

TIME 1
TIME 4

(b)

(@)

24

(c) Giovanni De Micheli

Example
Variable-lifetimes and circular-arc conflict graph

(c) Giovanni De Micheli

Bus sharing and binding
u Find the minimum number of busses to accommodate all

data transfer

u Find the maximum number of data transfers for a fixed
number of busses

u Similar to memory binding problem

(c) Giovanni De Micheli 30

Example

2
TIME 1

3 6
TIME 2
z4
z3
TIME 3 @ @7

TIME 4

()
u One bus:
s 3 variables can be transferred
u Two busses:
s All variables can be transferred

(c) Giovanni De Micheli

z1

z2

z3

z4

z5

z6

(b)

31

Module selection problem

u Extension of resource sharing
s Library of resources:
s More than one resource per type

u Example:
s Ripple-carry adder (small and slow)
s Carry look-ahead adder (big and fast)

u Resource modeling:

s Resource subtypes with
t (area, delay) parameters

(c) Giovanni De Micheli

32

Module selection solution

u ILP formulation:

s Decision variables

t Select resource sub-type
t Determine (area, delay)

u Heuristic algorithm
s Determine minimum latency with fastest resource subtypes
s Recover area by using slower resources on non-critical paths

(c) Giovanni De Micheli

33

Example

u Multipliers with:
s (Area, delay)=(5,1)and(2,2)
u Latency bound of 5

(c) Giovanni De Micheli

Slow multipliers
save area

34

u

u

Example 2

Latency bound of 4
s Fast multipliers for { v, v2, v3}

s Slower multiplier can be used elsewhere
t Less sharing

Minimum-Ilatency design uses fast multipliers only
s Impossible to use slow multipliers

(c) Giovanni De Micheli

35

u Objectives
s Data path generation

s Control synthesis

(c) Giovanni De Micheli

Module 2

36

Data path synthesis

u Applied after resource binding

u Connectivity synthesis:
s Connection of resources to multiplexers busses and registers

s Control unit interface
s /0 ports

u Physical data path synthesis

s Specific techniques for regular datapath design

t Regularity extraction

(c) Giovanni De Micheli

37

Example

REGISTERS .
a .
3 .
dx =
> x [«———-——-= enable
> v .
> u -
*D_’ rl :
" r2 .
i /f::::::::::\‘ N/f‘_ /f::::::::::::i Mux control
S I A N :
)))) e ,: ALU control (+,-,<)
. ALU | 5.
DATA-PATH CONTROL-UNIT

(c) Giovanni De Micheli

Control synthesis

u Synthesis of the control unit

u Logic model:
s Synchronous FSM

u Physical implementation:
s Hard-wired or distributed FSM

s Microcode

(c) Giovanni De Micheli

39

\ ’
X .
TIME 4 @ S S/
\ reset reset
(NOP! n 26,810 reget 3,791
reset ,
reset

(c) Giovanni De Micheli 40

Summary

u Resource sharing is reducible to vertex coloring or to
clique covering:
s Simple for flat graphs

s Intractable, but still easy in practice, for other graphs

s Resource sharing has several extensions:
t Module selection

u Data path design and control synthesis are conceptually
simple but still important steps in synthesis

s Generated data path is an interconnection of blocks
s Control is one or more finite-state machines

(c) Giovanni De Micheli

41

	Slide 1: Resource sharing
	Slide 2: Module 1
	Slide 3: Allocation and binding
	Slide 4: Binding
	Slide 5: Optimum sharing problem
	Slide 6: Compatibly and conflicts
	Slide 7: Example
	Slide 8: Compatibility and conflicts
	Slide 9: Data-flow graphs (flat sequencing graphs)
	Slide 10: Perfect graphs
	Slide 11: Example
	Slide 12: Example
	Slide 13: Left-edge algorithm
	Slide 14: Example
	Slide 15: Left-edge algorithm
	Slide 17: Hierarchical sequencing graphs
	Slide 18: Example
	Slide 19: Example
	Slide 20: Register binding problem
	Slide 21: Register sharing in data-flow graphs
	Slide 22: Example
	Slide 23: Register sharing general case
	Slide 24: Example
	Slide 25: Example Variable-lifetimes and circular-arc conflict graph
	Slide 30: Bus sharing and binding
	Slide 31: Example
	Slide 32: Module selection problem
	Slide 33: Module selection solution
	Slide 34: Example
	Slide 35: Example 2
	Slide 36: Module 2
	Slide 37: Data path synthesis
	Slide 38: Example
	Slide 39: Control synthesis
	Slide 40: Example
	Slide 41: Summary

