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Module 1

u Objectives
s Motivation and problem formulation
s Flat and hierarchical graphs
s Functional and memory resources

s Extension to module selection
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Allocation and binding

u Allocation:

s Number of resources available
u Binding:

s Relation between operations and resources
u Sharing:

s Many-to-one relation
u Optimum binding/sharing:

s Minimize the resource usage
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Binding

u Limiting cases:

s Dedicated resources

t One resource per operation
t No sharing

s One multi-task resource
t+ ALU

s One resource per type
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Optimum sharing problem

u Scheduled sequencing graphs

s Operation concurrency is well defined

u Consider operation types independently
s Problem decomposition
s Perform analysis for each resource type
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Compatibly and conflicts

0 Operation compatibility:
0 Same type
0 Non concurrent

0 Compatibility graph:
0 Vertices: operations
0 Edges: compatibility relation

0 Conflict graph:

0 Complement of compatibility graph
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Compatibility and conflicts

u Compatibility graph:
s Partition the graph into a minimum number of cliques

s Find clique cover number « ( G.)

u Conflict graph:

s Color the vertices by a minimum number of colors.

s Find the chromatic number x ( G_)

u Intractable problems:

s Heuristic algorithms
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Data-flow graphs
(flat sequencing graphs)
u The compatibility/conflict graphs have special properties:

s Compatibility
t Comparability graph
s Conflict

t Interval graph

u Polynomial time solutions:

s Golumbic’ s algorithm

s Left-edge algorithm
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Perfect graphs

u Comparability graph:

s Graph G (V, E ) has an orientation G ( V, F) with the transitive
property

(v, v)eF and (v,v)eF — (v,v)eF

u Interval graph:

s Vertices correspond to intervals
s Edges correspond to interval intersection

s Subset of chordal graphs

t Every loop with more than three edges has a chord
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Left-edge algorithm

u Input:

s Set of intervals with left and right edge
t Start and Stop times

s A set of colors (initially one color)

u Rationale:
s Sort intervals in a list by left edge

s Assign non overlapping intervals to first color using the list

s When possible intervals are exhausted,
increase color counter and repeat
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Example

8 IIIIIIIIIIIIIII R
™ To]

7 IIIIIIIIIIIII R

O—F——————- —_— R ——
ID———————- f—7——————- 1%)
] o | ) — S
oo 4 2
c
SR R IR R O £

- ©

- —— - -4 @ —-——— =

Oll lllllllllllll

<

o

@©

|-

o

© <t N ks

=

c

o

O

Coloring

Colored conflict

14

graph

(c) Giovanni De Micheli



Left-edge algorithm

LEFT_EDGE(/) {
Sort elements of /in a list L in ascending order of /;

c=0;
while (some interval has not been colored) do {
S = ;
r=0;
while ( exists s € L such that /; > r) do {
s = First element in the list L with [ > r;
S=SU({s}
r=rs
Delete s from L;
}
c=ct1;
Label elements of S with color c;
}
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Hierarchical sequencing graphs

u Hierarchical conflict/compatibility graphs:

s Easy to compute

s Prevent sharing across hierarchy

u Flatten hierarchy:
s Bigger graphs

s Destroy nice properties
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Register binding problem

u Given a schedule:

s Lifetime intervals for variables
s Lifetime overlaps

u Conflict graph (interval graph):
s Vertices < variables
s Edges < overlaps
s Interval graph

u Compatibility graph (comparability graph):

s Complement of conflict graph
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Register sharing in data-flow graphs

u Given:
s Variable lifetime conflict graph

u Find:

s Minimum number of registers storing all the variables

u Key point:

s Interval graph
t Left-edge algorithm (polynomial-time complexity)
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Register sharing
general case

u lterative conflicts:
s Preserve values across iterations

s Circular-arc conflict graph
t Coloring is intractable

u Hierarchical graphs:

s General conflict graphs
t Coloring is intractable

u Heuristic algorithms
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Example
Variable-lifetimes and circular-arc conflict graph
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Bus sharing and binding
u Find the minimum number of busses to accommodate all

data transfer

u Find the maximum number of data transfers for a fixed
number of busses

u Similar to memory binding problem
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Example
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u One bus:
s 3 variables can be transferred
u Two busses:
s All variables can be transferred
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Module selection problem

u Extension of resource sharing
s Library of resources:
s More than one resource per type

u Example:
s Ripple-carry adder (small and slow)
s Carry look-ahead adder (big and fast)

u Resource modeling:

s Resource subtypes with
t (area, delay ) parameters
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Module selection solution

u ILP formulation:

s Decision variables

t Select resource sub-type
t Determine ( area, delay)

u Heuristic algorithm
s Determine minimum latency with fastest resource subtypes
s Recover area by using slower resources on non-critical paths
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Example

u Multipliers with:
s (Area, delay)=(5,1)and(2,2)
u Latency bound of 5
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u

u

Example 2

Latency bound of 4
s Fast multipliers for { v, v2, v3}

s Slower multiplier can be used elsewhere
t Less sharing

Minimum-Ilatency design uses fast multipliers only
s Impossible to use slow multipliers
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u Objectives
s Data path generation

s Control synthesis
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Data path synthesis

u Applied after resource binding

u Connectivity synthesis:
s Connection of resources to multiplexers busses and registers

s Control unit interface
s /0 ports

u Physical data path synthesis

s Specific techniques for regular datapath design

t Regularity extraction
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Control synthesis

u Synthesis of the control unit

u Logic model:
s Synchronous FSM

u Physical implementation:
s Hard-wired or distributed FSM

s Microcode
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Summary

u Resource sharing is reducible to vertex coloring or to
clique covering:
s Simple for flat graphs

s Intractable, but still easy in practice, for other graphs

s Resource sharing has several extensions:
t Module selection

u Data path design and control synthesis are conceptually
simple but still important steps in synthesis

s Generated data path is an interconnection of blocks
s Control is one or more finite-state machines
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