
Resource sharing

Giovanni De Micheli
Integrated Systems Laboratory

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

u Objectives

s Motivation and problem formulation

s Flat and hierarchical graphs

s Functional and memory resources

s Extension to module selection

(c) Giovanni De Micheli 3

Allocation and binding

u Allocation:

s Number of resources available

u Binding:

s Relation between operations and resources

u Sharing:

s Many-to-one relation

u Optimum binding/sharing:

s Minimize the resource usage

(c) Giovanni De Micheli 4

Binding

u Limiting cases:

s Dedicated resources

t One resource per operation

t No sharing

s One multi-task resource

t ALU

s One resource per type

(c) Giovanni De Micheli 5

Optimum sharing problem

u Scheduled sequencing graphs

s Operation concurrency is well defined

u Consider operation types independently

s Problem decomposition

s Perform analysis for each resource type

(c) Giovanni De Micheli 6

Compatibly and conflicts

Operation compatibility:

Same type

Non concurrent

Compatibility graph:

Vertices: operations

Edges: compatibility relation

Conflict graph:

Complement of compatibility graph

t1 x=a+b y=c+d 1 2

t2 s=x+y t=x-y 3 4

t3 z=a+t 5

1 2

3 4

5

Compatibility graph

Conflict graph

1 2

3 4

5

(c) Giovanni De Micheli 7

Example

t1 x=a+b y=c+d 1 2

t2 s=x+y t=x-y 3 4

t3 z=a+t 5

Conflict

1 2

3 4

5

1 2

3 4

5

Compatibility

PartitioningColoring

ALU1: 1,3,5

ALU2: 2,4

(c) Giovanni De Micheli 8

Compatibility and conflicts

u Compatibility graph:

s Partition the graph into a minimum number of cliques

s Find clique cover number k (G+)

u Conflict graph:

s Color the vertices by a minimum number of colors.

s Find the chromatic number х (G_)

u Intractable problems:

s Heuristic algorithms

(c) Giovanni De Micheli 9

Data-flow graphs
(flat sequencing graphs)

u The compatibility/conflict graphs have special properties:

s Compatibility

t Comparability graph

s Conflict

t Interval graph

u Polynomial time solutions:

s Golumbic’s algorithm

s Left-edge algorithm

(c) Giovanni De Micheli 10

Perfect graphs

u Comparability graph:

s Graph G (V, E) has an orientation G (V, F) with the transitive

property

 (vi, vj) є F and (vj, vk) є F → (vi, vk) є F

u Interval graph:

s Vertices correspond to intervals

s Edges correspond to interval intersection

s Subset of chordal graphs

t Every loop with more than three edges has a chord

(c) Giovanni De Micheli 11

Example

TIME 1

TIME 2

TIME 3

TIME 4

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

3 1 8

7 6 2

4 10

5 11

9

(c) Giovanni De Micheli 12

Example

TIME 1

TIME 2

TIME 3

TIME 4

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

1

4

5 9

102

3 6

7 8

11

(c) Giovanni De Micheli 13

Left-edge algorithm

u Input:

s Set of intervals with left and right edge

t Start and Stop times

s A set of colors (initially one color)

u Rationale:

s Sort intervals in a list by left edge

s Assign non overlapping intervals to first color using the list

s When possible intervals are exhausted,

increase color counter and repeat

(c) Giovanni De Micheli 14

Example

0 1 2 3 4 5 6 7

1

6

4

7

8

2

3

5

1

0 1 2 3 4 5 6 7 8

2 3

6 7 5

4

1 6

7 4

2

3

5

Conflict graph

Intervals

6

7 4

2

1

3

5

Colored conflict

graph

Coloring

(c) Giovanni De Micheli 15

Left-edge algorithm

LEFT_EDGE(I) {

 Sort elements of I in a list L in ascending order of li;

 c = 0;

 while (some interval has not been colored) do {

 S = Ø;

 r = 0;

 while (exists s є L such that ls > r) do {

 s = First element in the list L with ls > r;

 S = S U {s};

 r = rs;

 Delete s from L;

 }

 c = c + 1;

 Label elements of S with color c;

 }

}

(c) Giovanni De Micheli 17

Hierarchical sequencing graphs

u Hierarchical conflict/compatibility graphs:

s Easy to compute

s Prevent sharing across hierarchy

u Flatten hierarchy:

s Bigger graphs

s Destroy nice properties

(c) Giovanni De Micheli 18

Example

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

TIME 6

TIME 7

a

a

*

*

*

2

3

4

a 2

34

a

+

a

*

a

+

a

*

2

*

3

*

4

*

(a) (b) (c)

(c) Giovanni De Micheli 19

Example

(a) (b) (c)

a

dc

b

a

b

c d

TIME 1

TIME 2

TIME 3

TIME 4

a

BR c

b

NOP

NOP

d

NOP

NOP

(c) Giovanni De Micheli 20

Register binding problem

u Given a schedule:
s Lifetime intervals for variables

s Lifetime overlaps

u Conflict graph (interval graph):
s Vertices variables

s Edges overlaps

s Interval graph

u Compatibility graph (comparability graph):
s Complement of conflict graph

(c) Giovanni De Micheli 21

Register sharing in data-flow graphs

u Given:

s Variable lifetime conflict graph

u Find:

s Minimum number of registers storing all the variables

u Key point:

s Interval graph

t Left-edge algorithm (polynomial-time complexity)

(c) Giovanni De Micheli 22

Example

* *

* *

*-

-

TIME 1

TIME 2

TIME 3

TIME 4

1 2

3

4

5

6

7

z1 z2

z3
z4

z5
z6

z1

z3

z5

z2

z4

z6

z1 z2

z3 z4

z5 z6

(a) (b) (c)

(c) Giovanni De Micheli 23

Register sharing
 general case

u Iterative conflicts:

s Preserve values across iterations

s Circular-arc conflict graph

t Coloring is intractable

u Hierarchical graphs:

s General conflict graphs

t Coloring is intractable

u Heuristic algorithms

(c) Giovanni De Micheli 24

Example

TIME 1

TIME 2

TIME 3

TIME 4

<

* *

*

*

+

*

*

+-

-

3 x u dx

3

y u dx x dx

dx

y

u

u
y

c

a

4

5

3

7

9

1 2

6

8

10

11

z1 z2

z3 z4

z5 z6

z7

x
y

u

z1 z2

z3 z4

z5 z6

u y

u y

z7

x

x

(a) (b)

(c) Giovanni De Micheli 25

Example
Variable-lifetimes and circular-arc conflict graph

z1 z2

z3 z4

z5 z6

u

z7

x y

x

1

2

3

4

z5
z6

z7

z4 z3

z1

z2

u y

(c) Giovanni De Micheli 30

Bus sharing and binding

u Find the minimum number of busses to accommodate all

data transfer

u Find the maximum number of data transfers for a fixed

number of busses

u Similar to memory binding problem

(c) Giovanni De Micheli 31

Example

u One bus:
s 3 variables can be transferred

u Two busses:

s All variables can be transferred

* *

* *

*-

-

TIME 1

TIME 2

TIME 3

TIME 4

1 2

3

4

5

6

7

z1
z2

z3
z4

z5
z6

z1

z3

z5

z2

z4

z6

z1 z2

z3 z4

z5 z6

(a) (b) (c)

(c) Giovanni De Micheli 32

Module selection problem

u Extension of resource sharing

s Library of resources:

s More than one resource per type

u Example:

s Ripple-carry adder (small and slow)

s Carry look-ahead adder (big and fast)

u Resource modeling:

s Resource subtypes with

t (area, delay) parameters

(c) Giovanni De Micheli 33

Module selection solution

u ILP formulation:

s Decision variables

t Select resource sub-type

t Determine (area, delay)

u Heuristic algorithm

s Determine minimum latency with fastest resource subtypes

s Recover area by using slower resources on non-critical paths

(c) Giovanni De Micheli 34

Example

u Multipliers with:
s (Area, delay) = (5,1) and (2,2)

u Latency bound of 5

*

*

+

<

-

-

*

*

*

*

+

NOP

NOP

0

1

2

3

4

5

6

7

8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

TIME 5

(1,1)

(1,2)
(2,1)

(2,2)

Slow multipliers

save area

(c) Giovanni De Micheli 35

Example 2

u Latency bound of 4

s Fast multipliers for { v1 , v2 , v3 }

s Slower multiplier can be used elsewhere
t Less sharing

u Minimum-latency design uses fast multipliers only

s Impossible to use slow multipliers

*

*

+

<

-

-

* *

*

*

+

NOP

NOP

0

1 2

3

4

5

6

7 8

9

10

11

n

TIME 1

TIME 2

TIME 3

TIME 4

(1,1)
(1,2) (2,1)

(2,2)

(c) Giovanni De Micheli 36

Module 2

u Objectives

s Data path generation

s Control synthesis

(c) Giovanni De Micheli 37

Data path synthesis

u Applied after resource binding

u Connectivity synthesis:

s Connection of resources to multiplexers busses and registers

s Control unit interface

s I/O ports

u Physical data path synthesis

s Specific techniques for regular datapath design

t Regularity extraction

(c) Giovanni De Micheli 38

Example

* ALU

DATA-PATH CONTROL-UNIT

r2

r1

u

y

x

dx

3

a

REGISTERS

enable

Mux control

ALU control (+,-,<)

c

(c) Giovanni De Micheli 39

Control synthesis

u Synthesis of the control unit

u Logic model:

s Synchronous FSM

u Physical implementation:

s Hard-wired or distributed FSM

s Microcode

(c) Giovanni De Micheli 40

Example

* *

*

-

-

*

*

* +

+ <

NOP

NOP

1 2

3

4

5

6

7

8

9

10

11

0

n

TIME 1

TIME 2

TIME 3

TIME 4

reset

reset’

4

s1

s4 s3

s2

reset’

reset

5

reset

reset’1,2,6,8,10 3,7,9,11

(c) Giovanni De Micheli 41

Summary

u Resource sharing is reducible to vertex coloring or to

clique covering:

s Simple for flat graphs

s Intractable, but still easy in practice, for other graphs

s Resource sharing has several extensions:
t Module selection

u Data path design and control synthesis are conceptually

simple but still important steps in synthesis

s Generated data path is an interconnection of blocks

s Control is one or more finite-state machines

	Slide 1: Resource sharing
	Slide 2: Module 1
	Slide 3: Allocation and binding
	Slide 4: Binding
	Slide 5: Optimum sharing problem
	Slide 6: Compatibly and conflicts
	Slide 7: Example
	Slide 8: Compatibility and conflicts
	Slide 9: Data-flow graphs (flat sequencing graphs)
	Slide 10: Perfect graphs
	Slide 11: Example
	Slide 12: Example
	Slide 13: Left-edge algorithm
	Slide 14: Example
	Slide 15: Left-edge algorithm
	Slide 17: Hierarchical sequencing graphs
	Slide 18: Example
	Slide 19: Example
	Slide 20: Register binding problem
	Slide 21: Register sharing in data-flow graphs
	Slide 22: Example
	Slide 23: Register sharing general case
	Slide 24: Example
	Slide 25: Example Variable-lifetimes and circular-arc conflict graph
	Slide 30: Bus sharing and binding
	Slide 31: Example
	Slide 32: Module selection problem
	Slide 33: Module selection solution
	Slide 34: Example
	Slide 35: Example 2
	Slide 36: Module 2
	Slide 37: Data path synthesis
	Slide 38: Example
	Slide 39: Control synthesis
	Slide 40: Example
	Slide 41: Summary

