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Module 1

u Objectives

s Motivation and problem formulation 

s Flat and hierarchical graphs

s Functional and memory resources

s Extension to module selection
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Allocation and binding

u Allocation:

s Number of resources available

u Binding:

s Relation between operations and resources

u Sharing:

s Many-to-one relation

u Optimum binding/sharing:

s Minimize the resource usage
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Binding

u Limiting cases:

s Dedicated resources

t One resource per operation

t No sharing

s One multi-task resource

t ALU

s One resource per type
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Optimum sharing problem

u Scheduled sequencing graphs

s Operation concurrency is well defined

u Consider operation types independently

s Problem decomposition

s Perform analysis for each resource type
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Compatibly and conflicts

Operation compatibility:

Same type

Non concurrent

Compatibility graph:

Vertices: operations

Edges: compatibility relation

Conflict graph:

Complement of compatibility graph

t1 x=a+b            y=c+d 1 2

t2 s=x+y             t=x-y 3 4

t3 z=a+t 5

1 2

3 4

5

Compatibility graph

Conflict graph
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3 4

5
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Example

t1 x=a+b            y=c+d 1 2

t2 s=x+y             t=x-y 3 4

t3 z=a+t 5

Conflict

1 2

3 4

5

1 2

3 4

5

Compatibility

PartitioningColoring

ALU1: 1,3,5

ALU2: 2,4
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Compatibility and conflicts

u Compatibility graph:

s Partition the graph into a minimum number of cliques

s Find clique cover number k ( G+ )

u Conflict graph:

s Color the vertices by a minimum number of colors.

s Find the chromatic number х ( G_ )

u Intractable problems:

s Heuristic algorithms
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Data-flow graphs
(flat sequencing graphs)

u The compatibility/conflict graphs have special properties:

s Compatibility

t Comparability graph

s Conflict

t Interval graph

u Polynomial time solutions:

s Golumbic’s algorithm

s Left-edge algorithm
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Perfect graphs

u Comparability graph:

s Graph G (V, E ) has an orientation G ( V, F ) with the transitive 

property

   (vi, vj) є F  and    (vj, vk) є F  →  (vi, vk) є F

u Interval graph:

s Vertices correspond to intervals

s Edges correspond to interval intersection

s Subset of chordal graphs

t Every loop with more than three edges has a chord
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Example
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Example
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Left-edge algorithm

u Input:

s Set of intervals with left and right edge

t Start and Stop times

s A set of colors (initially one color)

u Rationale:

s Sort intervals in a list by left edge

s Assign non overlapping intervals to first color using the list

s When possible intervals are exhausted, 

increase color counter and repeat
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Example
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Left-edge algorithm

LEFT_EDGE(I) {

 Sort elements of I in a list L in ascending order of li;

 c = 0;

 while (some interval has not been colored) do {

  S = Ø;

  r = 0;

  while (  exists s є L such that ls > r ) do {

   s = First element in the list L with ls > r;

   S = S U {s};

   r = rs;

   Delete s from L;

  }

  c = c + 1;

  Label elements of S with color c;

 }

}
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Hierarchical sequencing graphs

u Hierarchical conflict/compatibility graphs:

s Easy to compute

s Prevent sharing across hierarchy

u Flatten hierarchy:

s Bigger graphs

s Destroy nice properties
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Example
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Example

(a) (b) (c)
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Register binding problem

u Given a schedule:
s Lifetime intervals for variables

s Lifetime overlaps

u Conflict graph (interval graph):
s Vertices    variables

s Edges  overlaps

s Interval graph

u Compatibility graph (comparability graph):
s Complement of conflict graph
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Register sharing in data-flow graphs

u Given:

s Variable lifetime conflict graph

u Find:

s Minimum number of registers storing all the variables

u Key point:

s Interval graph

t Left-edge algorithm (polynomial-time complexity)



(c)  Giovanni De Micheli 22

Example
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Register sharing
 general case

u Iterative conflicts:

s Preserve values across iterations

s Circular-arc conflict graph

t Coloring is intractable

u Hierarchical graphs:

s General conflict graphs

t Coloring is intractable

u Heuristic algorithms
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Example
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Example 
Variable-lifetimes and circular-arc conflict graph
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Bus sharing and binding

u Find the minimum number of busses to accommodate all 

data transfer

u Find the maximum number of data transfers for a fixed 

number of busses

u Similar to memory binding problem
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Example

u One bus:
s 3 variables can be transferred

u Two busses:

s All variables can be transferred
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Module selection problem

u Extension of resource sharing

s Library of resources:

s More than one resource per type

u Example:

s Ripple-carry adder (small and slow)

s Carry look-ahead adder (big and fast)

u Resource modeling:

s Resource subtypes with

t ( area, delay ) parameters
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Module selection solution

u ILP formulation:

s Decision variables

t Select resource sub-type

t Determine ( area, delay )

u Heuristic algorithm

s Determine minimum latency with fastest resource subtypes

s Recover area by using slower resources on non-critical paths
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Example

u Multipliers with:
s ( Area, delay ) = ( 5,1 ) and ( 2,2 )

u Latency bound of 5
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Example 2

u Latency bound of 4

s Fast multipliers for { v1 , v2 , v3 }

s Slower multiplier can be used elsewhere
t Less sharing

u Minimum-latency design uses fast multipliers only

s Impossible to use slow multipliers
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Module 2

u Objectives

s Data path generation

s Control synthesis 
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Data path synthesis

u Applied after resource binding

u Connectivity synthesis:

s Connection of resources to multiplexers busses and registers

s Control unit interface

s I/O ports

u Physical data path synthesis

s Specific techniques for regular datapath design

t Regularity extraction
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Example
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Control synthesis

u Synthesis of the control unit

u Logic model:

s Synchronous FSM

u Physical implementation:

s Hard-wired or distributed FSM

s Microcode
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Example
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Summary

u Resource sharing is reducible to vertex coloring or to 

clique covering:

s Simple for flat graphs

s Intractable, but still easy in practice, for other graphs

s Resource sharing has several extensions:
t Module selection

u Data path design and control synthesis are conceptually 

simple but still important steps in synthesis

s Generated data path is an interconnection of blocks

s Control is one or more finite-state machines


	Slide 1:  Resource sharing
	Slide 2: Module 1
	Slide 3: Allocation and binding
	Slide 4: Binding
	Slide 5: Optimum sharing problem
	Slide 6: Compatibly and conflicts
	Slide 7: Example
	Slide 8: Compatibility and conflicts
	Slide 9: Data-flow graphs (flat sequencing graphs)
	Slide 10: Perfect graphs
	Slide 11: Example
	Slide 12: Example
	Slide 13: Left-edge algorithm
	Slide 14: Example
	Slide 15: Left-edge algorithm
	Slide 17: Hierarchical sequencing graphs
	Slide 18: Example
	Slide 19: Example
	Slide 20: Register binding problem
	Slide 21: Register sharing in data-flow graphs
	Slide 22: Example
	Slide 23: Register sharing  general case
	Slide 24: Example
	Slide 25: Example  Variable-lifetimes and circular-arc conflict graph
	Slide 30: Bus sharing and binding
	Slide 31: Example
	Slide 32: Module selection problem
	Slide 33: Module selection solution
	Slide 34: Example
	Slide 35: Example 2
	Slide 36: Module 2
	Slide 37: Data path synthesis
	Slide 38: Example
	Slide 39: Control synthesis
	Slide 40: Example
	Slide 41: Summary

